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Analog vs digital lock-in processing

• Lock-in amplifiers are commonly divided into analog and digital instruments.
• Both classes of instruments require ADCs and DACs to be implemented, the 

difference stands in how the demodulation process is carried out.

• Analog LIAs perform the demodulation 
in the analog domain and digitize the 
low frequency output of the mixer.

• Digital LIAs digitize the high 
frequency signal and then 
demodulate it in the digital domain.

ANALOG LIA DIGITAL LIA
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Pro & cons of analog and digital lock-in amplifiers
Analog

PROS
• By changing only the front-end 

amplifier and mixer, any stimulation 
frequency can be used.

• It does not require fast ADCs and 
digital signal processing.

• Simple implementation even in 
integrated circuits.

CONS
• Sensitive to 1/f noise of any stage after 

the demodulation (mixer, further gain 
stages, …) 

Digital
PROS
• Insensitive to 1/f noise of its building 

blocks.
• It can achieve sub-ppm resolution.
• Less components are required.

CONS
• Fast ADCs and complex digital signal 

processing are required.
• Implementation in ICs is not trivial, 

especially for high stimulation 
frequencies.
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Analog lock-in structure

• An (optional) high-pass filter can be used to remove the DC component before the 
demodulation.

• Two acquisition chains are needed after the TIA to perform I/Q demodulation and fully 
reconstruct the DUT impedance.

• A low-pass filter is used to avoid aliasing effects in the ADC acquisition, further low-
pass filtering can be done digitally to reduce the readout bandwidth if needed.



F. Zanetto – Analog vs digital lock-in processing 6/29

Requisite for using analog lock-in amplifiers

• The analog lock-in amplifier has the 
same noise performance as the 
digital one if the readout bandwidth 
is sufficiently larger than the 1/f noise 
corner frequency of the overall circuit.

• This ensures that the 1/f contribution 
is negligible with respect to the white 
noise.

• As a rule of thumb, the readout 
bandwidth should be roughly 10 
times larger than the 1/f noise corner 
frequency.

𝑓𝑓𝐵𝐵𝐵𝐵 = 1 𝑀𝑀𝑀𝑀𝑀𝑀 → 𝑣𝑣𝑁𝑁,𝑅𝑅𝑅𝑅𝑅𝑅
2 = 1.6 ⋅ 10−12 + 10−10 [𝑉𝑉2]

𝑓𝑓𝐵𝐵𝐵𝐵 = 100 𝑘𝑘𝑀𝑀𝑀𝑀 → 𝑣𝑣𝑁𝑁,𝑅𝑅𝑅𝑅𝑅𝑅
2 = 1.38 ⋅ 10−12 + 10−11 [𝑉𝑉2]

𝑓𝑓𝐵𝐵𝐵𝐵 = 10 𝑘𝑘𝑀𝑀𝑀𝑀 → 𝑣𝑣𝑁𝑁,𝑅𝑅𝑅𝑅𝑅𝑅
2 = 1.15 ⋅ 10−12 + 10−12 [𝑉𝑉2]

1/f white
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Generation of the lock-in signals

• The stimulation chain can be a source of noise in the measurement. Make sure to choose 
the right components not to worsen the lock-in performance. 

• The stimulation and I/Q demodulation signals are usually generated with a direct digital 
synthesizer (DDS).

Increasing the number of samples per sinusoid period 
improves the spectral purity of the stimulation signal and 
allows to better filter out the spurious harmonics.
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Mixer
• The mixer is critical in setting the lock-in amplifier performance because any non-

ideality is directly translated into a measurement error.
• It should have output offset and 1/f noise as low as possible and sufficiently high 

bandwidth and linearity (in the case of sinusoidal multipliers).
Passive mixer
• Low 1/f noise, only square 

wave demodulation

Active mixer
• Higher 1/f noise, more complex but 

sinusoidal demodulation possible.
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Mixer non-idealities

• Measurement errors introduced by the mixer cannot be removed because the 
signal has already been moved to low frequency. 

• Try to make the mixer work always in the same operating conditions (for example, 
remove DC offset before the demodulation) to avoid signal-dependent errors.

No HPF before mixer

Example: DC offset at mixer input can translate into demodulation error
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Amplification after the mixer

• If further amplification is needed after the mixer, choose an amplifier with very low 
1/f noise corner frequency and offset, because they are summed directly to the 
signal to be measured and can’t be removed afterwards.

• Chopper-stabilized amplifiers are a good option, because they are specifically 
designed for these applications.
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Analog to digital conversion

• A slow ADC is enough to digitize and 
acquire the lock-in output, that is already a 
DC signal.

• Choose the ADC number of bits such that 
the LSB is much smaller than the RMS noise 
at the input of the converter.

• This guarantees that the measurement 
result is not affected by the A/D conversion.

• Oversampling (choosing fSAMP ≫ BWREADOUT) 
can be used to make the effect of the ADC 
quantization noise negligible on the 
measurement result.

σNOISE = 5mV, LSB = 1 mV ✓

σNOISE = 5mV, LSB = 10 mV ✗
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Digital signal processing

• A digital processor is used to control the 
ADC operations, acquire the conversion 
result and provide it to the user.

• Usually a standard microcontroller 
(Arduino, STM32, …) is enough to perform 
this tasks since all the operations are 
performed at low speed (tens of kHz).

• A digital low-pass filter (such as a moving 
average filter) can be implemented on the 
microcontroller to further reduce the 
readout bandwidth and increase the 
measurement accuracy if needed.

f

Antialias filter

Digital LPF

Tunable BW Fixed BW

signal
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Example of application: detection of malaria infections            (1/3)

• The malaria parasite infects red 
blood cells (RBC) and makes them 
magnetic by producing hemozoin 
crystals.

• This property can be used to 
develop a system-on-chip for 
malaria detection.

• Healthy cells sediment on the 
bottom of the chip while infected 
ones are captured with a magnet.

• The infected cells are detected by 
using impedance sensing electrodes.
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Healthy RBC Infected RBC Ni micropillar

M. Giacometti et al., IEEE TBIOCAS, vol. 16, no. 6, pp. 1325-1336 (2022)
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Example of application: detection of malaria infections            (2/3)

Differential electrodes to limit the 
effect of temperature fluctuations 
of the liquid. 

• The measurement accuracy is limited by the 
conductivity fluctuations of the liquid.

• A low-cost analog lock-in amplifier can be used to 
perform the impedance measurement at 1 MHz.

No cells Captured cell
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Example of application: detection of malaria infections            (3/3)

• Custom biochip with 91 differential electrodes in parallel 
for large sensing area.

• Successful detection down to 40 infected cells per µL of 
buffer solution.

• By optimizing the biochip layout, single cell detection can 
also be achieved at the price of a smaller sensing area.

Single cell capture

Active sensors

Reference sensors
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Digital lock-in structure

• The front-end circuit is the same as in an analog LIA, but a fast ADC is now required 
to correctly sample the high-frequency input signal.

• A single acquisition chain is needed, the I/Q processing is performed only in the 
digital domain → advantage in terms of area with respect to analog LIA.

• The 1/f noise and offset of the acquisition chain do not affect the measurement 
because the down-conversion is performed in the digital domain.
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Digital signal processing (DSP)
• A digital processor is needed to demodulate and filter the ADC readout. 
• Especially when the lock-in is operated at high frequencies (tens of MHz), a 

microcontroller is not enough to perform real-time digital processing → FPGA-based 
digital LIAs are the most common approach.

• The DSP chain operates at the same frequency as the ADC sampling → for practical 
limitations of most FPGAs, it’s hard to work at sampling rates above 100 MHz.
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Suppression of the demodulation harmonics

The low-pass filter after the digital mixer has two main functions:
• Define the lock-in readout bandwidth.
• Suppress the harmonics generated by the demodulation process below the RMS 

noise level of the acquisition chain.

• Depending on the stimulation frequency and required readout bandwidth, the LPF 
can have challenging specifications in terms of out-of-band attenuation.

• A HPF before the mixer slightly the relaxes the LPF specs by removing the DC offset 
before it gets upconverted to fAC by the mixer.

DC offset of the 
acquisition chain
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LPF requirements

Example:
VIN = 2Vpp , Vnoise,RMS = 10 µV  → required LPF attenuation: ≫50000 
fAC = 100 kHz, BW = 1 kHz → a first-order LPF provides an attenuation of only 200

• Complex high-order filters, requiring multiple digital adders and multipliers, are 
usually needed to completely suppress the high-order harmonics.

• In real implementations, this is not always possible because of the limited hardware 
resources of standard FPGAs.

Is there a better way to remove the harmonics by taking advantage of the fact that we 
know their frequency a priori?
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Cascaded integrator-comb filter

• A cascaded integrator-comb filter is an 
efficient hardware implementation of the 
moving average filter.

• It is characterized by notches in its transfer 
function, that can be set by the user by 
properly designing the filter structure.

• The notches can be conveniently 
positioned to completely suppress the 
demodulation harmonics without requiring 
many hardware resources. 

• A first-order standard LPF can then be used 
just to define the readout bandwidth.

fNOTCH = fS/N*D

2*fACfAC
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Example of application: detection of multiple DNA targets      (1/3)

• Lab-on-chip with functionalized electrodes for simultaneous 
detection of multiple DNA targets.

• Differential measurement for rejection of all common mode 
signals by using non-functionalized electrodes.

Forcing

R1

R1

After final wash

Active sensor

Reference sensor
No aspecific bindings and 

beads after washing!
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∆V ∝ number of beads 
∝ bio-target
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P. Piedimonte et al., Biosensors and Bioelectronics, vol. 221, pp. 113996 (2021)
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Example of application: detection of multiple DNA targets      (2/3)

Custom digital lock-in platform:
• Compactness and portability 

→ Point Of Care configuration
• 8 independent channels for multisensing

→ Simultaneous detection of multiple 
biological targets in a single experiment

• Impedance readout resolution of 100 ppm 
→Digital counting of targets

• Stabilization of the chip temperature with 
m°C accuracy

→ Stable temperature during the 
experiment(Dimensions: 18 cm x 22 cm)

FPGA

Refer en ce and Su pply

Sen sor Reading

Sen sor
For cing 

Temp eratu re con tro l
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Example of application: detection of multiple DNA targets      (3/3)
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ADC requirements for high-speed (> 1 MHz) digital LIAs

• To meet the resolution and speed requirements 
of certain applications, ADCs with 12 to 16 bits 
and up to ~100 MSps are usually required.

• This generates a great amount of data that 
need to be transmitted to the digital processor                
(e.g: 80 Msps, 14 bit → 1.12 Gbit/s).

• In order not to require clocks in the GHz range, 
high-speed ADCs usually have a parallel digital 
interface at the output. 

Digital LIAs with many channels in parallel are 
hard to be implemented because a huge number 
of digital lines are needed.
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Hybrid lock-in solutions

• The design of multichannel high-speed lock-in acquisition systems is challenging 
because a good compromise between performance, complexity and area 
occupation needs to be found.

• Digital LIAs offer excellent performance and low area occupation for the front-end 
circuit, but they require fast ADCs with a good number of bits.

• This introduces a complexity overhead, because a lot of high-speed digital 
connections need to be managed.

• In addition, digital LIAs cannot be easily operated above ~100 MHz

Is there a way to keep the advantages of digital LIAs while using slow ADCs as in 
analog implementations?
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Heterodyne lock-in detection
• An analog mixer moves the signal from high frequency to an intermediate frequency.
• The intermediate frequency should be chosen above the 1/f noise corner of the 

acquisition circuit in order not to degrade the lock-in performance.
• A single slow ADC can be used to digitize the signal at intermediate frequency, 

without requiring complex handling of high-speed digital signals.
• A second I/Q demodulation is performed digitally to complete the lock-in acquisition.



F. Zanetto – Analog vs digital lock-in processing 30/29

Frequency behaviour

• The effect of 1/f noise and offset of all stages is canceled!
• Synchronization of the lock-in processing is needed to ensure consistency!!!
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Some math

VOUT,TIA = Asin ωSTIMt + ϕ = Bsin ωSTIMt + Ccos(ωSTIMt)

VOUT, MIX 1 = Bsin ωSTIMt + Ccos ωSTIMt ⋅ sin ωSTIM − ωMID t = B
2

cos ωMIDt − C
2

sin ωMIDt

VOUT, MIX 2, IP =
B
2

cos ωMIDt −
C
2

sin ωMIDt cos ωMIDt =
B
4

cos 0 −
C
4

sin 0 =
B
4

VOUT, MIX 2, Q =
B
2

cos ωMIDt −
C
2

sin ωMIDt −sin ωMIDt = −
B
4

sin 0 +
C
4

cos(0) =
C
4

Neglecting 
high-order 
harmonics 
that are 
filtered
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Lock-in synchronization: DDS

To ensure consistency of the lock-in processing among 
different experiments:
• Use the same clock to drive all the DDSs.
• Compute the frequency word of the intermediate 

DDS as difference between the other two, to avoid 
rounding approximations:

𝐹𝐹𝑊𝑊𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = 𝑓𝑓𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 ⋅
2𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝐷𝐷𝑅𝑅

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐹𝐹𝑊𝑊𝑅𝑅𝑆𝑆𝐷𝐷 = 𝑓𝑓𝑅𝑅𝑆𝑆𝐷𝐷 ⋅

2𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝐷𝐷𝑅𝑅

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐹𝐹𝑊𝑊𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅−𝑅𝑅𝑆𝑆𝐷𝐷= 𝐹𝐹𝑊𝑊𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 − 𝐹𝐹𝑊𝑊𝑅𝑅𝑆𝑆𝐷𝐷

• Always start/stop/update all the DDS simultaneously 
to keep same initial conditions.
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Lock-in synchronization: ADC
• The synchronization of the ADC conversion is also critical to obtain consistent 

results among different experiments.
• Sampling the input waveforms in different points results in different demodulation 

results, because demodulation is a non-linear process.
• The error decreases if the number of samples per period increases, but it can’t be 

completely solved unless proper synchronization is ensured → restart the ADC 
conversion whenever any parameter of the DDSs are updated to always sample the 
input waveform in the same points.
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Experimental demonstration of the heterodyne lock-in

• White noise = 200nV/ Hz
• 1/f noise corner frequency of 

the acquisition chain = 10 Hz
• Lock-in bandwidth = 10 Hz
• Intermediate frequency = 5 kHz

• The effect of the acquisition chain offset is removed with the heterodyne technique.
• The readout noise is reduced because the 1/f component is avoided.

RMS noise ~ 2 uV RMS noise ~ 800 nV
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Conclusions

• Choose the best lock-in architecture depending 
on the requirements of the application.

• Beware of 1/f noise after analog demodulation 
to obtain the best performance.

• Carefully design the signal processing chain of 
digital LIAs.

• Consider hybrid lock-in solutions in those 
situations where the standard approaches 
struggle.
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